p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.195C23, C23.204C24, C22.432+ (1+4), C22.272- (1+4), C22.43(C4×D4), (C22×C4).167D4, C22.D4⋊7C4, C23.607(C2×D4), C23.8Q8⋊6C2, C2.4(C23⋊3D4), C22.95(C23×C4), (C23×C4).45C22, C22.92(C22×D4), C23.224(C4○D4), C23.34D4⋊12C2, C23.125(C22×C4), (C22×C4).469C23, (C2×C42).411C22, C24.C22⋊5C2, C23.23D4.4C2, C23.63C23⋊4C2, (C22×D4).477C22, C23.65C23⋊12C2, C2.C42.40C22, C2.3(C22.33C24), C2.4(C23.38C23), C2.11(C23.33C23), C4⋊C4⋊9(C2×C4), C2.21(C2×C4×D4), (C2×C4×D4).31C2, (C22×C4⋊C4)⋊8C2, C22⋊C4⋊9(C2×C4), (C4×C22⋊C4)⋊32C2, (C22×C4)⋊23(C2×C4), (C2×C4).676(C2×D4), (C2×D4).167(C2×C4), (C2×C4).25(C22×C4), C22.89(C2×C4○D4), (C2×C4⋊C4).177C22, (C2×C22.D4).5C2, (C2×C22⋊C4).426C22, SmallGroup(128,1054)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 556 in 316 conjugacy classes, 148 normal (34 characteristic)
C1, C2 [×3], C2 [×4], C2 [×6], C4 [×20], C22 [×3], C22 [×8], C22 [×22], C2×C4 [×14], C2×C4 [×52], D4 [×8], C23, C23 [×8], C23 [×10], C42 [×4], C22⋊C4 [×12], C22⋊C4 [×8], C4⋊C4 [×8], C4⋊C4 [×12], C22×C4 [×5], C22×C4 [×16], C22×C4 [×14], C2×D4 [×4], C2×D4 [×4], C24 [×2], C2.C42 [×10], C2×C42, C2×C42 [×2], C2×C22⋊C4 [×4], C2×C22⋊C4 [×4], C2×C4⋊C4, C2×C4⋊C4 [×8], C2×C4⋊C4 [×4], C4×D4 [×4], C22.D4 [×8], C23×C4 [×4], C22×D4, C4×C22⋊C4, C23.34D4, C23.8Q8, C23.8Q8 [×2], C23.23D4, C23.63C23 [×2], C24.C22 [×2], C23.65C23 [×2], C22×C4⋊C4, C2×C4×D4, C2×C22.D4, C24.195C23
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], C23 [×15], C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, C4×D4 [×4], C23×C4, C22×D4, C2×C4○D4, 2+ (1+4) [×2], 2- (1+4) [×2], C2×C4×D4, C23.33C23 [×2], C23⋊3D4, C23.38C23, C22.33C24 [×2], C24.195C23
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=g2=b, eae-1=gag-1=ab=ba, ac=ca, ad=da, faf-1=abc, bc=cb, bd=db, fef-1=geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, gfg-1=bcf >
(2 13)(4 15)(5 64)(6 38)(7 62)(8 40)(10 35)(12 33)(17 50)(19 52)(21 27)(22 57)(23 25)(24 59)(26 41)(28 43)(30 55)(32 53)(37 46)(39 48)(42 60)(44 58)(45 63)(47 61)
(1 16)(2 13)(3 14)(4 15)(5 46)(6 47)(7 48)(8 45)(9 34)(10 35)(11 36)(12 33)(17 50)(18 51)(19 52)(20 49)(21 42)(22 43)(23 44)(24 41)(25 58)(26 59)(27 60)(28 57)(29 54)(30 55)(31 56)(32 53)(37 64)(38 61)(39 62)(40 63)
(1 20)(2 17)(3 18)(4 19)(5 37)(6 38)(7 39)(8 40)(9 31)(10 32)(11 29)(12 30)(13 50)(14 51)(15 52)(16 49)(21 27)(22 28)(23 25)(24 26)(33 55)(34 56)(35 53)(36 54)(41 59)(42 60)(43 57)(44 58)(45 63)(46 64)(47 61)(48 62)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 43 16 22)(2 23 13 44)(3 41 14 24)(4 21 15 42)(5 34 46 9)(6 10 47 35)(7 36 48 11)(8 12 45 33)(17 25 50 58)(18 59 51 26)(19 27 52 60)(20 57 49 28)(29 39 54 62)(30 63 55 40)(31 37 56 64)(32 61 53 38)
(1 35 16 10)(2 11 13 36)(3 33 14 12)(4 9 15 34)(5 27 46 60)(6 57 47 28)(7 25 48 58)(8 59 45 26)(17 29 50 54)(18 55 51 30)(19 31 52 56)(20 53 49 32)(21 64 42 37)(22 38 43 61)(23 62 44 39)(24 40 41 63)
G:=sub<Sym(64)| (2,13)(4,15)(5,64)(6,38)(7,62)(8,40)(10,35)(12,33)(17,50)(19,52)(21,27)(22,57)(23,25)(24,59)(26,41)(28,43)(30,55)(32,53)(37,46)(39,48)(42,60)(44,58)(45,63)(47,61), (1,16)(2,13)(3,14)(4,15)(5,46)(6,47)(7,48)(8,45)(9,34)(10,35)(11,36)(12,33)(17,50)(18,51)(19,52)(20,49)(21,42)(22,43)(23,44)(24,41)(25,58)(26,59)(27,60)(28,57)(29,54)(30,55)(31,56)(32,53)(37,64)(38,61)(39,62)(40,63), (1,20)(2,17)(3,18)(4,19)(5,37)(6,38)(7,39)(8,40)(9,31)(10,32)(11,29)(12,30)(13,50)(14,51)(15,52)(16,49)(21,27)(22,28)(23,25)(24,26)(33,55)(34,56)(35,53)(36,54)(41,59)(42,60)(43,57)(44,58)(45,63)(46,64)(47,61)(48,62), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,43,16,22)(2,23,13,44)(3,41,14,24)(4,21,15,42)(5,34,46,9)(6,10,47,35)(7,36,48,11)(8,12,45,33)(17,25,50,58)(18,59,51,26)(19,27,52,60)(20,57,49,28)(29,39,54,62)(30,63,55,40)(31,37,56,64)(32,61,53,38), (1,35,16,10)(2,11,13,36)(3,33,14,12)(4,9,15,34)(5,27,46,60)(6,57,47,28)(7,25,48,58)(8,59,45,26)(17,29,50,54)(18,55,51,30)(19,31,52,56)(20,53,49,32)(21,64,42,37)(22,38,43,61)(23,62,44,39)(24,40,41,63)>;
G:=Group( (2,13)(4,15)(5,64)(6,38)(7,62)(8,40)(10,35)(12,33)(17,50)(19,52)(21,27)(22,57)(23,25)(24,59)(26,41)(28,43)(30,55)(32,53)(37,46)(39,48)(42,60)(44,58)(45,63)(47,61), (1,16)(2,13)(3,14)(4,15)(5,46)(6,47)(7,48)(8,45)(9,34)(10,35)(11,36)(12,33)(17,50)(18,51)(19,52)(20,49)(21,42)(22,43)(23,44)(24,41)(25,58)(26,59)(27,60)(28,57)(29,54)(30,55)(31,56)(32,53)(37,64)(38,61)(39,62)(40,63), (1,20)(2,17)(3,18)(4,19)(5,37)(6,38)(7,39)(8,40)(9,31)(10,32)(11,29)(12,30)(13,50)(14,51)(15,52)(16,49)(21,27)(22,28)(23,25)(24,26)(33,55)(34,56)(35,53)(36,54)(41,59)(42,60)(43,57)(44,58)(45,63)(46,64)(47,61)(48,62), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,43,16,22)(2,23,13,44)(3,41,14,24)(4,21,15,42)(5,34,46,9)(6,10,47,35)(7,36,48,11)(8,12,45,33)(17,25,50,58)(18,59,51,26)(19,27,52,60)(20,57,49,28)(29,39,54,62)(30,63,55,40)(31,37,56,64)(32,61,53,38), (1,35,16,10)(2,11,13,36)(3,33,14,12)(4,9,15,34)(5,27,46,60)(6,57,47,28)(7,25,48,58)(8,59,45,26)(17,29,50,54)(18,55,51,30)(19,31,52,56)(20,53,49,32)(21,64,42,37)(22,38,43,61)(23,62,44,39)(24,40,41,63) );
G=PermutationGroup([(2,13),(4,15),(5,64),(6,38),(7,62),(8,40),(10,35),(12,33),(17,50),(19,52),(21,27),(22,57),(23,25),(24,59),(26,41),(28,43),(30,55),(32,53),(37,46),(39,48),(42,60),(44,58),(45,63),(47,61)], [(1,16),(2,13),(3,14),(4,15),(5,46),(6,47),(7,48),(8,45),(9,34),(10,35),(11,36),(12,33),(17,50),(18,51),(19,52),(20,49),(21,42),(22,43),(23,44),(24,41),(25,58),(26,59),(27,60),(28,57),(29,54),(30,55),(31,56),(32,53),(37,64),(38,61),(39,62),(40,63)], [(1,20),(2,17),(3,18),(4,19),(5,37),(6,38),(7,39),(8,40),(9,31),(10,32),(11,29),(12,30),(13,50),(14,51),(15,52),(16,49),(21,27),(22,28),(23,25),(24,26),(33,55),(34,56),(35,53),(36,54),(41,59),(42,60),(43,57),(44,58),(45,63),(46,64),(47,61),(48,62)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,43,16,22),(2,23,13,44),(3,41,14,24),(4,21,15,42),(5,34,46,9),(6,10,47,35),(7,36,48,11),(8,12,45,33),(17,25,50,58),(18,59,51,26),(19,27,52,60),(20,57,49,28),(29,39,54,62),(30,63,55,40),(31,37,56,64),(32,61,53,38)], [(1,35,16,10),(2,11,13,36),(3,33,14,12),(4,9,15,34),(5,27,46,60),(6,57,47,28),(7,25,48,58),(8,59,45,26),(17,29,50,54),(18,55,51,30),(19,31,52,56),(20,53,49,32),(21,64,42,37),(22,38,43,61),(23,62,44,39),(24,40,41,63)])
Matrix representation ►G ⊆ GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0],[4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0] >;
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4H | 4I | ··· | 4AD |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | C4○D4 | 2+ (1+4) | 2- (1+4) |
kernel | C24.195C23 | C4×C22⋊C4 | C23.34D4 | C23.8Q8 | C23.23D4 | C23.63C23 | C24.C22 | C23.65C23 | C22×C4⋊C4 | C2×C4×D4 | C2×C22.D4 | C22.D4 | C22×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 16 | 4 | 4 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2^4._{195}C_2^3
% in TeX
G:=Group("C2^4.195C2^3");
// GroupNames label
G:=SmallGroup(128,1054);
// by ID
G=gap.SmallGroup(128,1054);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,456,758,219,100,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=g^2=b,e*a*e^-1=g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c,b*c=c*b,b*d=d*b,f*e*f^-1=g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*f*g^-1=b*c*f>;
// generators/relations